
gameswar

WHY YOU SHOULD CAREJAVA VULNERABILITIES AND

About Me.

 Gerrit Grunwald | Developer Advocate | Azul | @hansolo_

I am a
developer

Not a
security
expert

2021
november

24tH

Shell4Log

20th
century

Software landscape

Code was self written and closed source
Source code was managed in a repository on a local server
Manually build
Delivered on hardware (CD, DVD, USB-Sticks)

Ran on closed networks or local servers
Large monolithic systems
Connected systems only in government / banking / energy providers
Full control over the source code

Software landscape

20th Century

20th century
vulnerabilities

Password hacking / cracking
Computer viruses (spread via floppy discs/usb sticks)
Early days of hacking via internet

20th Century vulnerabilities
Vulnerabilities

time flies

21st
century

Software landscape

A lot of open source software used
Distributed source code management systems
Automated builds by CI / CD systems
Hosted in artifact repositories
Running on public networks
Accessible via browsers or api's
"Everything" is connected
No full control over the source code
Today we have a whole software supply chain

Software landscape

21st Century

21st century
vulnerabilities

Danger through Social Engineering (SIM swapping etc.)
Malware / Ransomware (spread via mail / websites)
Everything that is connected, will be hacked
Spreading malicious code is way easier
The whole software supply chain is target of attacks

21st Century Vulnerabilities
Vulnerabilities

some
definitions

CWE
Common Weakness Enumeration

CWE
Common Weakness Enumeration

Community developed list
of software and hardware
weakness types.

https://cwe.mitre.org/

https://cwe.mitre.org/

NVD
National Vulnerability Database

NVD
National Vulnerability Database

U.S. government repository
of standards based
vulnerability management
data, represented using
the Security Content
Automation Protocol (SCAP)

https://nvd.nist.gov/

https://nvd.nist.gov

CVE
Common Vulnerability + Exposure

CVE
Common Vulnerability + Exposure

"Identify, define, and
catalog publicly disclosed
cybersecurity
vulnerabilities"

https://cve.org/

CVE Program Mission

https://cve.org

Shell4Log

CVE-2021-44228

CVE-2021-44228
Log4Shell Apache Log4j2 2.0-beta9 through 2.15.0

(excluding security releases 2.12.2, 2.12.3, and
2.3.1) JNDI features used in configuration, log
messages, and parameters do not protect
against attacker controlled LDAP and other JNDI
related endpoints. An attacker who can control
log messages or log message parameters can
execute arbitrary code loaded from LDAP servers
when message lookup substitution is enabled.
From log4j 2.15.0, this behavior has been disabled
by default. From version 2.16.0 (along with 2.12.2,
2.12.3, and 2.3.1), this functionality has been
completely removed. Note that this vulnerability
is specific to log4j-core and does not affect
log4net, log4cxx, or other Apache Logging
Services projects.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

CVE-2021-44228
Log4Shell Apache Log4j2 2.0-beta9 through 2.15.0

(excluding security releases 2.12.2, 2.12.3, and
2.3.1) JNDI features used in configuration, log
messages, and parameters do not protect
against attacker controlled LDAP and other JNDI
related endpoints. An attacker who can control
log messages or log message parameters can
execute arbitrary code loaded from LDAP servers
when message lookup substitution is enabled.
From log4j 2.15.0, this behavior has been disabled
by default. From version 2.16.0 (along with 2.12.2,
2.12.3, and 2.3.1), this functionality has been
completely removed. Note that this vulnerability
is specific to log4j-core and does not affect
log4net, log4cxx, or other Apache Logging
Services projects.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Versions affected

CVE-2021-44228
Log4Shell Apache Log4j2 2.0-beta9 through 2.15.0

(excluding security releases 2.12.2, 2.12.3, and
2.3.1) JNDI features used in configuration, log
messages, and parameters do not protect
against attacker controlled LDAP and other JNDI
related endpoints. An attacker who can control
log messages or log message parameters can
execute arbitrary code loaded from LDAP servers
when message lookup substitution is enabled.
From log4j 2.15.0, this behavior has been disabled
by default. From version 2.16.0 (along with 2.12.2,
2.12.3, and 2.3.1), this functionality has been
completely removed. Note that this vulnerability
is specific to log4j-core and does not affect
log4net, log4cxx, or other Apache Logging
Services projects.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

The vulnerability

CVE-2021-44228
Log4Shell Apache Log4j2 2.0-beta9 through 2.15.0

(excluding security releases 2.12.2, 2.12.3, and
2.3.1) JNDI features used in configuration, log
messages, and parameters do not protect
against attacker controlled LDAP and other JNDI
related endpoints. An attacker who can control
log messages or log message parameters can
execute arbitrary code loaded from LDAP servers
when message lookup substitution is enabled.
From log4j 2.15.0, this behavior has been disabled
by default. From version 2.16.0 (along with 2.12.2,
2.12.3, and 2.3.1), this functionality has been
completely removed. Note that this vulnerability
is specific to log4j-core and does not affect
log4net, log4cxx, or other Apache Logging
Services projects.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Description

cvss
Common Vulnerability Severity Score

Vulnerability Severity Ratings

Low 0.0 - 3.9

Medium 4.0 - 6.9

High 7.0 - 10.0

Severity Score

(CVSS v2.0)

CVSS
Common Vulnerability Severity Score

https://nvd.nist.gov/vuln-metrics/cvss

https://nvd.nist.gov/vuln-metrics/cvss

Vulnerability Severity Ratings

None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

Severity Score

(CVSS v3.1)

CVSS
Common Vulnerability Severity Score

https://nvd.nist.gov/vuln-metrics/cvss

CVSS v4.0
1st Nov 2023

https://nvd.nist.gov/vuln-metrics/cvss

High 9.3
Severity Score

CVSS v2.0

cvss
CVE-2021-44228 (Log4Shell)

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Critical 10.0
Severity Score

CVSS v3.1

is java
secure ?

Openjdk
vulnerability

group

Private forum (trusted members of the OpenJDK community)
Receives/reviews reports of vulnerabilities in the OpenJDK code base
Collaborates on fixing the issues
Coordinates the release of such fixes
Maintains list of CVE's patched for each release
Tracks CVE's by component (not all Java users leverage every component)
Discusses OpenJDK security related issues
Does not actively test the OpenJDK source code

What is it...?

openjdk vulnerability group

Openjdk
vulnerability

advisories

OpenJDK Vulnerability
Adivsories

vulnerability
ADVISORIES

https://openjdk.org/groups/vulnerability/advisories/

Published 4x a year

Describing
- Severity
- Area
- Affected versions

Example 17th of October 2023

openjdk vulnerability advisories

Java release
cycle

Old Cadence

Java Release Cycle

6

2006

8

2014

LTS

2007 2008 2009

7

2010 2011 2012 2013

4.5 YEARS 3 YEARS

New Cadence

Java Release Cycle

2025

20

2023

18

2022

16

2021

14

2020

12

2019

10

2018

9

22

2024

13 15 19 23

2017

11

LTS

21

LTS

17

LTS

3 YEARS 2 YEARS

2017 2018 2019 2020 2021 2022 2023 2024

24

2025

6 MONTHS

but how does
that help ?

Features per release

Mar 2014 Sep 2017 Mar 2018 Sep 2018 Mar 2019 Sep 2019 Mar 2020 Sep 2020 Mar 2021 Sep 2021 Mar 2022 Sep 2022 Mar 2023

91

56

Java Release Cycle

JDK 8
LTS

JDK 9

Features per release

Mar 2014 Sep 2017 Mar 2018 Sep 2018 Mar 2019 Sep 2019 Mar 2020 Sep 2020 Mar 2021 Sep 2021 Mar 2022 Sep 2022 Mar 2023

775

14171416

58

17
12

91

56

Java Release Cycle

JDK 8
LTS

JDK 11
LTS

JDK 17
LTS

JDK 9 JDK 10 JDK 12 JDK 13 JDK 14 JDK 15 JDK 16 JDK 18 JDK 19 JDK 20

Features per release

Mar 2014 Sep 2017 Mar 2018 Sep 2018 Mar 2019 Sep 2019 Mar 2020 Sep 2020 Mar 2021 Sep 2021 Mar 2022 Sep 2022 Mar 2023

775

14171416

58

17
12

91

56

Java Release Cycle

JDK 8
LTS

JDK 11
LTS

JDK 17
LTS

JDK 9 JDK 10 JDK 12 JDK 13 JDK 14 JDK 15 JDK 16 JDK 18 JDK 19 JDK 20

Less features per release means
less potential vulnerabilities per release

JAVA
Updates

cpu
Critical Patch Update

CPU
Critical Patch Update

Contains

Fixes vulnerabilities

Fixes critical issues

Safe to use in production

PSU
Patch Set Update

Could possibly introduce new vulnerabilities !!!

PSU
Patch Set Update

Contains

Fixes vulnerabilities

Fixes critical issues

Fixes non critical issues

New features

Superset of CPU

Four times a year

Updates

17.0.2 PSU CPU

17.0.2 CPU

January

Four times a year

Updates

17.0.2 PSU CPU

17.0.2 CPU

17.0.3 PSU CPU

17.0.3 CPU

January April

Vulnerability Fixes

Fixes and Features

Four times a year

Updates

17.0.2 PSU CPU

17.0.2 CPU

17.0.3 PSU CPU

17.0.3 CPU

17.0.4 PSU CPU

17.0.4 CPU

January April July

Fixes and Features Fixes and Features

Vulnerability Fixes
Vulnerability Fixes

Four times a year

Updates

17.0.2 PSU CPU

17.0.2 CPU

17.0.3 PSU CPU

17.0.3 CPU

17.0.4 PSU CPU

17.0.4 CPU

January April July

17.0.5 PSU CPU

17.0.5 CPU

October

Fixes and Features Fixes and Features Fixes and Features

Vulnerability Fixes
Vulnerability Fixes

Vulnerability Fixes

Keep in mind

Updates

Updates are available 4 times a year (every 3 months starting from January)
Patch Set Updates (PSU) contains the CPU plus non-critical fixes and
small features
Critical Patch Updates (CPU) contain only critical vulnerability fixes and
are feature-wise always one step behind the PSU

Why CPUs matter

Updates

PSU 8u252 introduced a change that prevented Hadoop cluster and
Solr from running
CPU 8u251 only contained security fixes from PSU 8u242 and did not
introduce this change

Impact
without
updates

17.0.1

CVE-2021-35567

CVE-2021-35586

CVE-2021-35564

CVE-2021-35561

CVE-2021-35559

CVE-2021-35578

CVE-2021-35556

CVE-2021-35603

6.8

5.9

5.3

5.3

5.3

5.3

5.3

3.7

8 CVE's

19.10.2021

17.0.0

14.09.2021

JDK 17

17.0.2

CVE-2022-21341

CVE-2022-21365

CVE-2022-21282

CVE-2022-21291

CVE-2022-21277

CVE-2022-21305

CVE-2022-21299

CVE-2022-21296

CVE-2022-21283

CVE-2022-21340

CVE-2022-21293

CVE-2022-21294

CVE-2022-21360

CVE-2022-21366

CVE-2022-21248

5.3

5.3

5.3

5.3

5.3

5.3

5.3

3.7

15 CVE's

5.3

5.3

5.3

5.3

5.3

5.3

5.3

18.01.2022

17.0.3

CVE-2022-21449

CVE-2022-21496

CVE-2022-21434

CVE-2022-21426

CVE-2022-21443

7.5

5.3

5.3

5.3

3.7

5 CVE's

19.04.2022

17.0.4

CVE-2022-34169

CVE-2022-21541

CVE-2022-21540

7.5

5.9

5.3

3 CVE's

19.07.2022

17.0.5

CVE-2022-21618

CVE-2022-21628

CVE-2022-39399

CVE-2022-21619

CVE-2022-21624

5.3

5.3

3.7

3.7

3.7

5 CVE's

18.10.2022

17.0.6

CVE-2023-21835

CVE-2023-21843

5.3

3.7

2 CVE's

17.01.2023

17.0.7

CVE-2023-21930

CVE-2023-21954

CVE-2023-21967

CVE-2023-21939

CVE-2023-21938

CVE-2023-21937

CVE-2023-21968

7.4

5.9

5.9

5.3

3.7

7 CVE's

18.04.2023

3.7

3.7

17.0.8

CVE-2023-22041

CVE-2023-25193

CVE-2023-22044

CVE-2023-22045

CVE-2023-22049

CVE-2023-22036

CVE-2023-22006

5.1

3.7

3.7

7 CVE's

18.07.2023

3.7

3.7

3.7

3.1

17.0.9

CVE-2023-22081

CVE-2023-22025

5.3

3.7

2 CVE's

17.10.2023

3 High CVE's

35 Medium CVE's

16 Low CVE's

JDK 17 54
If you stick to 17.0.0 you are vulnerable to 54 CVE's !!!

impact without updates

if it ain't broke
don't fix it ?

if it ain't broke
at least keep it

up to date !

Modular
Runtime
images

Reducing risk by removing modules
JLink makes this possible (since JDK9 introduced the Java Platform Module System JPMS)
Removing unused modules means reducing risk for vulnerabilities
Hackers cannot attack what isn't there
Your application doesn't need to be modular

modular runtime images
Java Platform Module System

modular runtime images
Java Platform Module System

java.scripting

java.se

java.security.jgss

java.security.sasl

java.smartcardio

java.sql

java.sql.rowset

java.transaction.xa

java.xml

java.xml.crypto

jdk.accessibility

jdk.attach

java.base

java.compiler

java.datatransfer

java.desktop

java.instrument

java.logging

java.management

java.management.rmi

java.naming

java.prefs

java.net.http

java.rmi

jdk.charsets

jdk.compiler

jdk.crypto.cryptoki

jdk.crypto.ec

jdk.dynalink

jdk.editpad

jdk.hotspot.agent

jdk.internal.ed

jdk.internal.jvmstat

jdk.internal.le

jdk.httpserver

jdk.incubator.vector

jdk.internal.opt

jdk.internal.vm.ci

jdk.internal.vm.compiler

jdk.internal.vm.compiler.
management

jdk.javadoc

jdk.jconsole

jdk.jdeps

jdk.jdwp.agent

jdk.jdi

jdk.jfr

jdk.jartool

jdk.jcmd

jdk.jlink

jdk.jshell

jdk.jsobject

jdk.jstatd

jdk.localedata

jdk.management

jdk.management.agent

jdk.management.jfr

jdk.naming.dns

jdk.naming.rmi

jdk.jpackage

jdk.net

jdk.nio.mapmode

jdk.sctp

jdk.security.auth

jdk.security.jgss

jdk.unsupported

jdk.unsupported.desktop

jdk.xml.dom

jdk.zipfs

jdk.random

JDK 21.0.1

69 Modules
339 MB

http://java.se
http://jdk.net

modular runtime images
Java Platform Module System (JRE 21)

java.scripting

java.se

java.security.jgss

java.security.sasl

java.smartcardio

java.sql

java.sql.rowset

java.transaction.xa

java.xml

java.xml.crypto

jdk.accessibility

java.base

java.compiler

java.datatransfer

java.desktop

java.instrument

java.logging

java.management

java.management.rmi

java.naming

java.prefs

java.net.http

java.rmi

jdk.charsets

jdk.crypto.cryptoki

jdk.crypto.ec

jdk.dynalink

jdk.httpserver

jdk.incubator.vector

jdk.internal.vm.ci

jdk.internal.vm.compiler

jdk.internal.vm.compiler.
management

jdk.jdwp.agent

jdk.jfr

jdk.jsobject

jdk.localedata

jdk.management

jdk.management.agent

jdk.management.jfr

jdk.naming.dns

jdk.naming.rmi

jdk.net

jdk.nio.mapmode

jdk.sctp

jdk.security.auth

jdk.security.jgss

jdk.unsupported

jdk.xml.dom

jdk.zipfs

jdk.random

JRE 21.0.1

50 Modules
150 MB

http://java.se
http://jdk.net

modular runtime images
Java Platform Module System (JLINK JRE 21)

java.security.jgss

java.sql

java.base

java.desktop

java.management

java.naming

java.net.http

jdk.crypto.ec

jdk.localedata

jdk.sctp

jdk.unsupported

JLINK JRE

11 Modules
48 MB

modular runtime images

JDK
21.0.1

339 MB
69 Modules

JRE
21.0.1

150 MB
50 Modules

48 MB

JLINK
21.0.1

11 Modules

Java Platform Module System

Software
Supply Chain

Development

deploybuildsubmit

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

software supply chain

And it's vulnerabilities

Development

deploybuildsubmit

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

software supply chain

􀛤!
Submit

bad code

􀛤!
Compromise

source control

􀛤!
Build from

modified source

􀛤!
Compromise

build platform

􀛤!
Upload modified

package

􀛤!
Compromise

package repo

􀛤!
Use compromised

package

􀛤!
Use compromised

dependency

some facts

attacks
Software Supply Chain attacks

742%

(Sonatype State of the Software Chain report)

Increase over
the past

3
years

vulnerabilities
Distribution by severity over time

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

5000

10000

15000

20000

Low

(NIST National Vulnerability Database)

Medium High

The year 2021 saw

20 142
 unique bugs and

security vulnerabilities
recorded

user laziness
Downloaded versions of Log4j

(Christian Grobmeier, Log4j maintainer)

Of all Log4j downloads

20%
 are still vulnerable to

CVE 2021-44228,
even

21 months
 after Log4j has
been patched !

20% 􀈅

vulnerabilities
Transitive dependencies

About

6 out of 7
project vulnerabilities
come from transitive

dependencies

(Sonatype State of the Software Chain report)

security risk
Is prevalent

(Synopsys OSS security and risk analysis report)

At least one
vulnerability in

84%
of all scanned

codebases and

48%
contained high-risk

vulnerabilities

84%

48%

2018 2019 2020 2021 2022

100

80

60

40

20

0

open source
Is everywhere

(Synopsys OSS security and risk analysis report)

Open Source used in

96%
of all scanned

codebases and

76%
of code in codebases

was Open Source
2018 2019 2020 2021 2022

96%

76%

100

80

60

40

20

0

Open source

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

license

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

license

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

license

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

license

means...

I owe you
nothing !

Open Source
Providers...not suppliers Keep in mind that:

OpenSource maintainer
are not suppliers !

You don't have a business
relationship with them !

https://xkcd.com/2347/

If you use their code, it's
up to you to make sure it's
up to date and secure !

https://xkcd.com/2347/

WHAT CAN
WE DO ?

shift left

Development

deploybuildsubmit

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

shift left

DEV ops

Software Supply Chain

Development

deploybuildsubmit

ProductionArtifact RepoCI/CD

􀙅
Repository

shift left

Software Supply Chain

Security should start more on the left side of the diagram

dev OPSSEC

Plan

Dev Ops loop

DEV OPS

Plan

DEV OPS

Plan

co

de

Code

Dev Ops loop

DEV OPS

Plan

co

de

b
uild

Build

Dev Ops loop

DEV OPS

Plan

co

de

b
uild RELEA

S
E

Release

Dev Ops loop

DEV OPS

Plan

co

de

de

ploy

b
uild RELEA

S
E

Deploy

Dev Ops loop

DEV OPS

Plan

co

de

de

ploy operate

b
uild RELEA

S
E

Operate

Dev Ops loop

DEV OPS

Plan

co

de

de

ploy operate

monito
r

b
uild RELEA

S
E

Monitor

Dev Ops loop

DEV OPS

Plan

co

de

de

ploy operate

monito
r

b
uild RELEA

S
E

Plan

Dev Ops loop

DEV OPS

Plan

co

de

de

ploy operate

monito
r

b
uild RELEA

S
E

What about security?

Dev Ops loop

???

DEV OPS

Plan

co

de

de

ploy operate

monito
r

b
uild RELEA

S
E

SEC

Dev Sec ops

DEV OPS

Plan

co

de

de

ploy operate

monito
r

b
uild RELEA

S
E

SEC

Security applies to all areas

shift left ?

yes...but
also

validate
right

update youR
JDK

sdkman
Command line application

https://sdkman.io/

Facts

Supports many JDK
distributions

Commandline only

Linux, MacOS

Downloads and installs
JDK's

https://sdkman.io/
https://find-sec-bugs.github.io/

jdkmon
Desktop application

https://github.com/HanSolo/JDKMon/releases

Facts

Info about JDK updates

Supports "all" JDK
distributions

Downloads JDK's

Taskbar application

Windows, Linux, MacOS

Shows CVE's in OpenJDK

https://github.com/HanSolo/JDKMon/releases
https://find-sec-bugs.github.io/

Desktop application

JDKMon

Installed JDK distributions Vulnerabilities found for JDK

static code
analysis

Usually part of a code review (white-box testing)
Identifies vulnerabilities in source code
At the implementation phase
Inexpensive because adjustments can be done easily
Standalone tools / IDE plugins

What is it ?

static code analysis
(CVSS v2.0)

AppSonar/CodeSonar
Codiga
DerScanner
FindSecurityBugs
Snyk Code
SonarQube
Static Reviewer

Source Code Security Analyzers

static code analysis

by CyberTest
by Codiga
by DerSecur Ltd.
free
by Snyk Limited
by SonarSource
by Security Reviewer

taken from https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers

https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers

Find
security

bugs

Find security bugs
SpotBugs plugin

https://find-sec-bugs.github.io/

Facts

Free of charge

Extends SpotBugs

400+ bug patterns

Plugin

https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/

Eclipse Plugin

find security bugs

VulnerabiliTY
scanners

Detect vulnerabilities (using a database / probing for common flaws)

Monitor misconfigurations and coding flaws
Help using only artifacts from reliable sources
Help using only latest secure version (without known vulnerabilities)

Monitor appearance of new packages with fixed vulnerabilities
Update dependencies (as soon as new versions are available)

What is it?

Vulnerability scanners

SourceCode

deploybuildsubmit

ProductionArtifact RepoCI/CD

􀙅
Repository

SCAN, FIX
SCAN, FIX,
MONITOR

SCAN, FIX,
MONITOR MONITORSCAN

How they work

Vulnerability Scanners

􀛤!
often agent

based

INSTRUMENTATION
API

Agent based monitoring

vulnerability scanners

EXECUTION ENGINE

Interpreter

Native Method

Libraries

CLASS LOADER SUBSYSTEM

LOADING

Bootstrap Class Loader

Extension Class Loader

Application Class Loader

LINKING

Verification

Preparation

Resolution

INITIALISING

Initialisation

JVM MEMORY

Method Area

STACK

Thread #1

Thread #2

Thread #3

PC REGISTER

Thread #1 PC

Thread #2 PC

Thread #3 PC

Native Method

Stack
Heap

JIT COMPILER

C1

C2

Profiler

GARBAGE COLLECTOR

Serial

CMS

Z

Parallel

G1

Native Method

Interface

(JNI)

JVM
AGENT

Agent based monitoring

vulnerability scanners

EXECUTION ENGINE

Interpreter

Native Method

Libraries

CLASS LOADER SUBSYSTEM

LOADING

Bootstrap Class Loader

Extension Class Loader

Application Class Loader

LINKING

Verification

Preparation

Resolution

INITIALISING

Initialisation

JVM MEMORY

Method Area

STACK

Thread #1

Thread #2

Thread #3

PC REGISTER

Thread #1 PC

Thread #2 PC

Thread #3 PC

Native Method

Stack
Heap

JIT COMPILER

C1

C2

Profiler

GARBAGE COLLECTOR

Serial

CMS

Z

Parallel

G1

Native Method

Interface

(JNI)

INSTRUMENTATION
API

AGENT

Adds callback

Agent based monitoring

vulnerability scanners

EXECUTION ENGINE

Interpreter

Native Method

Libraries

CLASS LOADER SUBSYSTEM

LOADING

Bootstrap Class Loader

Extension Class Loader

Application Class Loader

LINKING

Verification

Preparation

Resolution

INITIALISING

Initialisation

JVM MEMORY

Method Area

STACK

Thread #1

Thread #2

Thread #3

PC REGISTER

Thread #1 PC

Thread #2 PC

Thread #3 PC

Native Method

Stack
Heap

JIT COMPILER

C1

C2

Profiler

GARBAGE COLLECTOR

Serial

CMS

Z

Parallel

G1

Native Method

Interface

(JNI)

INSTRUMENTATION
API

AGENT

Agent based monitoring

vulnerability scanners

EXECUTION ENGINE

Interpreter

Native Method

Libraries

CLASS LOADER SUBSYSTEM

LOADING

Bootstrap Class Loader

Extension Class Loader

Application Class Loader

LINKING

Verification

Preparation

Resolution

INITIALISING

Initialisation

JVM MEMORY

Method Area

STACK

Thread #1

Thread #2

Thread #3

PC REGISTER

Thread #1 PC

Thread #2 PC

Thread #3 PC

Native Method

Stack
Heap

JIT COMPILER

C1

C2

Profiler

GARBAGE COLLECTOR

Serial

CMS

Z

Parallel

G1

Native Method

Interface

(JNI)

INSTRUMENTATION
API

Performance hit of 10% or more !

Trigger callback

AGENT

Azul Vulnerability Detection
Black Duck
Xray
Snyk
SonarQube
Trivy

For Java development

Vulnerability scanners

by Azul
by Synopsis
by JFrog
by Snyk Limited
by SonarSource
by Aqua

SNYK code

snyk code
Static application Security Testing

https://snyk.io/product/snyk-code/

Facts

Free and paid version

9+ languages supported

Developer first

Standalone

IDE Plugin available

CI/CD integration

https://snyk.io/product/snyk-code/

Intellij Plugin

Snyk Code

WHERE ?

WHAT ?

sonarqube

Sonarqube
Automatic code review tool

https://www.sonarsource.com/products/sonarqube/

Facts

Free and paid version

30+ languages

4800+ analysis rules

Standalone

Plugin available

CI/CD integration

https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/

Intellij Plugin

SonarQube

WHERE ?WHAT ?
WHY ?

azul
vulnerability

detection

AVD
Azul Vulnerability Detection

https://www.azul.com/products/vulnerability-detection/

Facts

Runs in production

JVM only

Fewer false positives

Does code inventory

No Java agent -> no
performance overhead

https://www.azul.com/products/vulnerability-detection/

Web UI

Azul Vulnerability detection

WHERE ? VULNERABLE ? USED ?

a Secure
Software

supply chain

Development

Central Repo

deploybuildsubmit

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

example

Development

Central Repo

deploybuildsubmit

Kafka Elastic
Seach

Cassandra

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

log4j Spring

3rd party libraries 3rd party softwareexample

Development

Central Repo

deploybuildsubmit

Snyk Coverity Contrast

Kafka Elastic
Seach

Cassandra

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

log4j Spring

3rd party libraries

Code scanners

3rd party softwareexample

Development

Central Repo

deploybuildsubmit

Snyk Coverity Contrast BlackDuckSnyk Coverity

Kafka Elastic
Seach

Cassandra

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

log4j Spring

3rd party libraries

Code scanners CI/CD code scans

3rd party softwareexample

Development

Central Repo

deploybuildsubmit

Snyk Coverity Contrast BlackDuckSnyk Coverity

Kafka Elastic
Seach

Cassandra

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

log4j Spring

3rd party libraries

container scanning

Code scanners CI/CD code scans

3rd party softwareexample

Development

Central Repo

deploybuildsubmit

Snyk Coverity Contrast BlackDuckSnyk Coverity

Kafka Elastic
Seach

Cassandra

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

Azul
Vulnerability

Detection

log4j Spring

3rd party libraries

container scanning

Code scanners CI/CD code scans

3rd party softwareexample

Development

Central Repo

deploybuildsubmit

Snyk Coverity Contrast BlackDuckSnyk Coverity

Kafka Elastic
Seach

Cassandra

Central Repo

ProductionArtifact RepoCI/CD

􀙅
Repository

Azul
Vulnerability

Detection

log4j Spring

3rd party libraries

container scanning

Code scanners CI/CD code scans

3rd party softwareexample

shift left validate
right

takeaway

Follow an automated patch schedule
(in line with your OpenJDK vendors quarterly patch cycle)
Automate application packaging with jlink
(removing modules that are not used by your application)
Watch for CVE's in libraries
(automate their updates in the line with the OpenJDK quarterly patch schedule)

Use vulnerability scanners
(not only in development and CI/CD but also in production)

takeaway

need to be a
security
expert ?

no...

you need to
be aware

Stay
secure

